Multipartite Ramsey Numbers
نویسندگان
چکیده
For a graph G, a partiteness k ≥ 2 and a number of colours c, we define the multipartite Ramsey number r k (G) as the minimum value m such that, given any colouring using c colours of the edges of the complete balanced k-partite graph with m vertices in each partite set, there must exist a monochromatic copy of G. We show that the question of the existence of r k (G) is tied up with what monochromatic subgraphs are forced in a ccolouring of the complete graph Kk. We then calculate the values for some small G including r 3 (C4) = 3, r 2 4 (C4) = 2, r 3 3 (C4) = 7 and r 2 3 (C6) = 3.
منابع مشابه
Ramsey numbers in complete balanced multipartite graphs. Part II: Size numbers
The notion of a graph theoretic Ramsey number is generalised by assuming that both the original graph whose edges are arbitrarily bi–coloured and the sought after monochromatic subgraphs are complete, balanced, multipartite graphs, instead of complete graphs as in the classical definition. We previously confined our attention to diagonal multipartite Ramsey numbers. In this paper the definition...
متن کاملRamsey numbers in complete balanced multipartite graphs. Part I: Set numbers
The notion of a graph theoretic Ramsey number is generalised by assuming that both the original graph whose edges are arbitrarily bi–coloured and the sought after monochromatic subgraphs are complete, balanced, multipartite graphs, instead of complete graphs as in the classical definition. We previously confined our attention to diagonal multipartite Ramsey numbers. In this paper the definition...
متن کامل1 7 O ct 2 01 7 Projective planes and set multipartite Ramsey numbers for C 4 versus star Claudia
Set multipartite Ramsey numbers were introduced in 2004, generalizing the celebrated Ramsey numbers. Let C4 denote the four cycle and let K1,n denote the star on n + 1 vertices. In this paper we investigate bounds on C4−K1,n set multipartite Ramsey numbers. Relationships between these numbers and the classical C4−K1,n Ramsey numbers are explored. Then several near-optimal or exact classes are d...
متن کاملOn size multipartite Ramsey numbers for stars versus paths and cycles
Let Kl×t be a complete, balanced, multipartite graph consisting of l partite sets and t vertices in each partite set. For given two graphs G1 and G2, and integer j ≥ 2, the size multipartite Ramsey number mj(G1, G2) is the smallest integer t such that every factorization of the graph Kj×t := F1 ⊕ F2 satisfies the following condition: either F1 contains G1 or F2 contains G2. In 2007, Syafrizal e...
متن کاملSize Multipartite Ramsey Numbers for Small Paths Versus Stripes
For graphs G and H, the size balanced multipartite Ramsey number ) , ( H G m j is defined as the smallest positive integer s such that any arbitrary two red/blue coloring of the graph s j K × forces the appearance of a red G or a blue H . In this paper we find the exact values of the multipartite Ramsey numbers ) , ( 2 3 nK P m j and ) , ( 2 4 nK P m j .
متن کاملA multipartite Ramsey number for odd cycles
In this paper we study multipartite Ramsey numbers for odd cycles. Our main result is the proof of a conjecture of Gyárfás, Sárközy and Schelp [12]. Precisely, let n ≥ 5 be an arbitrary positive odd integer; then in any two-coloring of the edges of the complete 5-partite graph K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1 there is a monochromatic cycle of length n. keywords: cycles, Ramsey number, Regular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ars Comb.
دوره 58 شماره
صفحات -
تاریخ انتشار 2001